

Proudly Operated by Battelle Since 1965

Accelerating the development of transformational solvent systems for CO₂ separations (FWP-65872)

DAVID J. HELDEBRANT NETL CO₂ CAPTURE TECHNOLOGY MEETING PITTSBURGH, PA AUGUST 24, 2017

PNNL FY16 at a glance

- \$920.4M in R&D expenditures
- 4,400 scientists, engineers and nontechnical staff
- 104 U.S. & foreign patents granted
- 2 FLC Awards, 5 R&D 100
- 1,058 peer-reviewed publications

Integrating Molecular Design, Synthesis, and Testing to DOE's Solvent Portfolio

Proudly Operated by Battelle Since 1965

*Technology-neutral program, providing molecular-level insight to enhance performance.

Chemistry of Captured CO₂

Proudly Operated by Battelle Since 1965

There are three binding chemistries with CO₂; all operate on similar principles.

- Alkylcarbonates (a), carbamates (b), and azoline carboxylates (c) all form salts containing electrophilic sp²-hybridized anions
- Concentrated solvents behave similarly, *e.g.* viscosity, mass transfer

Project Goals and Objectives

Goals

- Develop tools for viscosity prediction and solvent design methodologies for reducing viscosity across all transformational solvent platforms.
- Screen hundreds of candidate molecules in order to down-select to 2-4 viable derivatives
- Develop cost-effective synthesis methodologies to bring solvent costs ~ \$10/kg.

Objectives

- Develop a reduced order viscosity model that can predict key solvent physical and thermodynamic properties for all solvent chemistries.
- Collect necessary additional thermodynamic and kinetic information for a library of compounds.
- Apply tools and methodologies to two or more solvent chemistries to aid in viscosity reduction of >400 cP.
- Apply the viscosity model and molecular design principles to other solvents in DOE's post-combustion solvent portfolio

Project Schedule and Major Tasks

Funding: \$4,061,000 / 36 months

Proudly Operated by Battelle Since 1965

Task 1. Pr	oject Management		
1.1	General Project Management		
Task 8. N	Iolecular Development of 3 rd Solvent Class Derivatives (Cycle 1)		
8.1	Establish and Validate Computational Protocol for 3 rd Solvent Class of Compounds		
8.2	Predictions of Physical and Thermodynamic Properties of up to 100 Molecules		
8.3	Synthesis of 2-4 3 rd Generation Derivatives Identified From Subtask 2.2		
8.4	Laboratory Property Testing (e.g., VLE, Viscosity, Kinetics) Completed for 2-4 3 rd Solvent Class Derivatives for Theory Validation (Cycle 1)		
Task 9. M	olecular Development of GAP Derivatives (Cycle 2)		
9.1	Model up to 100 New GAP Derivatives or Additives and Identify 2-4 Candidate Molecules (With ≥400 cP Reduction) for Synthesis & Characterization		
9.2	Synthesize & Characterize 2-4 Promising Derivatives From Subtask 3.1		
9.3	Laboratory Property Testing (e.g., VLE, Viscosity, Kinetics) Completed for 2-4 GAP Derivatives or Additives		
Task 10. C	Continuous Flow Testing of Final CO ₂ BOL Derivative (Cycle 3)		
10.1	Synthesis of 3-4L of 1-2 Candidate CO ₂ BOL Solvents		
10.2	Wetted Wall Testing of CO ₂ BOL Solvent to Measure CO ₂ Mass Transfer		
10.3	Testing Absorber and Stripper Performance on PNNL's Continuous Flow Cart With and Without PSAR Infrastructure, and With and Without Water		
10.4	Project Reboiler Heat Duty, Regen Temp, and Net Power Output for Final CO ₂ BOL Derivative		
Task 11. C	Continuous Flow Testing of Aqueous Solvents for Fluor		
11.1	Wetted Wall Testing of 6 Aqueous Solvents From Fluor to Measure CO ₂ Mass -Transfer		

(12 months – FY17)

| 7

Goal: To form molecular-level insights to GAP-1 solvents.

Aminosilicone Solvent Class

Objectives:

- Characterize solvent structure
- Reduce viscosity by >400 cP
- Impact of diluents and additives
- Mechanisms of degradation

Water

Milestones 9.1, 9.2, 9.3

Aminosilicones/Triethylene Glycol Molecular Structure

Aminosilicone Solvent Class: (Triethylene Glycol co-Solvent)²

Aminosilicones/Triethylene Glycol Molecular Structure

KEY:

Proudly Operated by Baffelle Since 1965

Mixtures of water and and GAP-1/TEG simulated to determine the impacts of additives such as water.

Water acts as a diluent by solvating carbamate clusters

(matching experimental observations)

- Comparable solvation seen with ethylene glycol and other diluents
- Diluents do reduce viscosity at low mole fractions

(matching experimental observations)

Heterogeneous Molecular Structure May Account for Similar Performance

CO₂BOLs and aminosilicones show similar predicted solvent structure and viscosity profiles as a function of CO₂ loading

10

Heterogeneous Molecular Structure May Account for Similar Performance

Proudly Operated by Battelle Since 1965

CO₂BOLs and aminosilicones show higher than expected mass transfer.

- k'_{a} vs. P* are comparable to MEA and piperazine under similar driving force
- Viscosity's impact of CO₂ mass transfer is less than anticipated
- IPADM-2-BOL and GAP/TEG fall on the same curve

*MEA/Piperazine data from UT Austin

Probing the Acid/Base Equilibrium

Proudly Operated by Battelle Since 1965

Probing the acid/base equilibrium in aminosilicones.

- GAP-0 and GAP-1 with implicit solvent: both isoenergetic (~0.001 kJ/mol)
 - Equilibrium likely observed in solution
- GAP-0 gas phase: Acid state is ~ 35kJ/mol lower in energy
- GAP-1 gas phase: Zwitterion is ~15 kJ/mol lower in energy

Legacy Solvents: 3rd Generation Molecules Currently Being Modeled

Proudly Operated by Battelle Since 1965

New 3rd generation derivatives designed with high P_{int} for low viscosity.

- 100% concentrated, can utilize PSAR
- Moieties promote internal H-bonding
 - Low viscosity
 - favor "acid" form
 - No hydrolysis or disproportionation
- Cheaper

Legacy 3rd Generation Solvents

Proudly Operated by Battelle Since 1965

Conclusions:

- Key descriptors of viscosity identified
- Co-solvents do not reduce viscosity
- New derivatives identified
 - More durable
 - Cheaper
- 100% concentrated
 - May use PSAR

Remaining FY17 work:

- Model molecules to determine viscosity of 3rd generation
- Make and test cP/P* and k'g for a 1-2 derivatives

Amino Pyridine Solvent Class

Proudly Operated by Battelle Since 1965

Goal: To form molecular-level insights of this newly discovered amine solvent class.

Objectives:

- Test individual compounds P* and k'g and cP
- Reduce volatility while retaining low viscosity
- Milestones: 8.1, 8.2

(12 months – FY17)

New Solvent Class Derived From CO₂BOL & GAP-1 Findings

Proudly Operated by Battelle Since 1965

Switchable carbamate ionic liquid with similar properties as CO₂BOLs.

100% concentrated, can utilize PSAR

Pyridine moiety can be added to GAP-1 derivatives to promote internal H-bonding

- Low viscosity
- Unique Acid/base equilibria predicted to favor "acid" form
 - Low regeneration temperature

Changing the Speciation of Amine Chemistry

Proudly Operated by Battelle Since 1965

CO₂ Uptake of 2-Picolylamine Shows 1:1 Chemistry Is Achievable

High P_{int} promotes a high degree of carbamic acid.

- Carbamic acid and zwitterionic carbamate salt equilibrium
- Standard 2:1 amine : binding mode

18

Koech el al. Submitted

Regeneration

CO₂ Capacity of AP Derivatives

Proudly Operated by Battelle Since 1965

ш

CO₂ Gravimetric Uptake of AP Derivatives at 40 °C Show High Capacity.

2 MAMP 4 MAMP 2 EAMP 4 EAMP 2 MAEP 2 MAMP 3 MAMP 4 MAMP 2 EAMP 4 EAMP 2 MAEP 1 CO2 capacity at 25 °C CO2 capacity at 25 °C 40 °C 40 °C 40 °C 1 CO2 capacity at 25 °C Mol% Mol% Mol% 10 °C 2 Compound Wt% Mol% Wt% Mol% 10 °C 2 MAMP 19.7 54.8 21.1 58.5 3.5 3 MAMP 19.5 54.1 20.0 54.9 14.0 4 MAMP 19.7 54.8 18.6 51.5 14.0 43.3 2 EAMP 18.2 56.5 14.0 43.3 14.0 43.3 14.0 43.3 14.0 43.3 14.0 4.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	N ^{CH} 3	N ^{-CH} 3	N H H			N∕∕CH ₃ H	CH ₃
CO2 capacity at 25 °CCO2 capacity at 40°CCompoundWt%Mol%Wt%Mol%2-MAMP19.754.821.158.53-MAMP19.554.120.054.94-MAMP19.754.818.651.52-EAMP18.256.514.043.34-EAMP18.356.716.751.82-MAEP17.855.219.259.8	2 ⁻ MAMP	3 ⁻ MAMP	4 MAMP	2 ⁻ EAMP	4 ⁻ E	AMP	2 MAEP
CompoundWt%Mol%Mol%2-MAMP19.754.821.158.53-MAMP19.554.120.054.94-MAMP19.754.818.651.52-EAMP18.256.514.043.34-EAMP18.356.716.751.82-MAEP17.855.219.259.8			CO₂ capaci	ty at 25 °C	CO ₂ capa 40°C	acity at	
2-MAMP19.754.821.158.53-MAMP19.554.120.054.94-MAMP19.754.818.651.52-EAMP18.256.514.043.34-EAMP18.356.716.751.82-MAEP17.855.219.259.8		Compound	Wt%	Mol%	Wt%	Mol%	
3-MAMP19.554.120.054.94-MAMP19.754.818.651.52-EAMP18.256.514.043.34-EAMP18.356.716.751.82-MAEP17.855.219.259.8		2-MAMP	19.7	54.8	21.1	58.5	
4-MAMP19.754.818.651.52-EAMP18.256.514.043.34-EAMP18.356.716.751.82-MAEP17.855.219.259.8		3-MAMP	19.5	54.1	20.0	54.9	
2-EAMP18.256.514.043.34-EAMP18.356.716.751.82-MAEP17.855.219.259.8		4-MAMP	19.7	54.8	18.6	51.5	
4-EAMP18.356.716.751.82-MAEP17.855.219.259.8		2-EAMP	18.2	56.5	14.0	43.3	
2-MAEP 17.8 55.2 19.2 59.8		4-EAMP	18.3	56.7	16.7	51.8	
		2-MAEP	17.8	55.2	19.2	59.8	

Six non-aqueous amines have high CO₂ capture capacity

- CO₂-rich solvents are liquids at room temperature
- Heat of amine reaction with CO_2 is ~75 KJ/mol

Regeneration of AP Derivatives

Proudly Operated by Battelle Since 1965

CO₂ Release Profiles Show Low Regeneration Temperatures W/WO PSAR

Compound	60 °C PSAR	70 °C	80 °C	100 °C	120 °C
2-MAMP		33.8	60.5	90.3	-
3-MAMP		31.1	51.0	77.5	-
4-MAMP		35.1	51.3	93.8	-
2-EAMP	81	85	95.8	-	-
4-EAMP		71.4	85.1	98.8	-
2-MAEP		-	34.6	76.4	90.3

- Lean solvent loadings achieved at only 60 °C
- 20 °C temperature swing
- Increased net power, lower evaporative losses, lower thermal degradation

Viscosity Profiles for AP Derivatives

Proudly Operated by Battelle Since 1965

High P_{int} reduces viscosity ~90% over IPADM-2-BOL.

Loading α_{CO_2} (mol/mol-solvent)

2-MAEP has 90% lower viscosity than CO₂BOL IPADM-2-BOL

Viscosity of 2-MAEP at 40 °C almost matches that of IPADM-2-BOL at 75 °C

Koech el al. Submitted

21

Kinetic Profiles for AP Derivatives

Proudly Operated by Battelle Since 1965

Comparable mass transfer to IPADM-2-BOL, 5M MEA, and 9 M piperazine.

AP Molecular Structure

Proudly Operated by Battelle Since 1965

Insights into molecular structure indicate new reactivity mesoscale ordering.

- Carbamate channels show different CO₂ binding mechanisms pending location of pyridine N
- Potential CO₂ diffusion channels
- Proton shuttling observed
- Potential for cooperative binding?

2nd Generation Aminopyridines

Proudly Operated by Battelle Since 1965

Show reduced volatility while retaining CO₂ capacity and low viscosity.

24

Koech el al. In Preparation

Amino Pyridine Solvent Class

Proudly Operated by Battelle Since 1965

Conclusions:

- AP solvent class shows promising viscosity though high volatility
- Tunable acid/base equilibria
- Low regeneration temperature (20 °C swing)

Remaining FY17 work:

- Reduce volatility while retaining low cP
- WWC testing and PVT to confirm testing
- Explore channels in solvent with respect to mass transfer

Acknowledgements

AL CO-ED SOFTBALL

Collaborators

Dr. Robert Perry

Dr. Paul M. Mathias

Proudly Operated by Battelle Since 1965